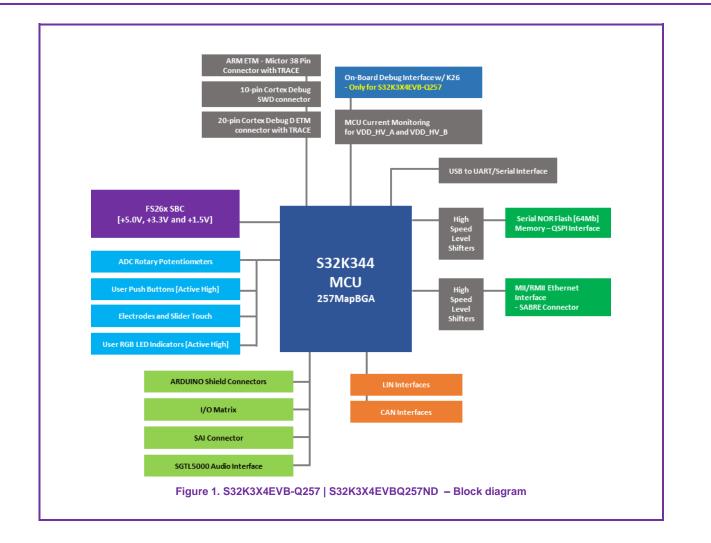
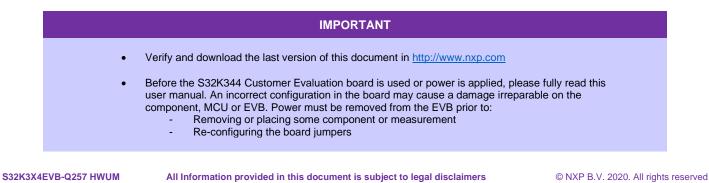


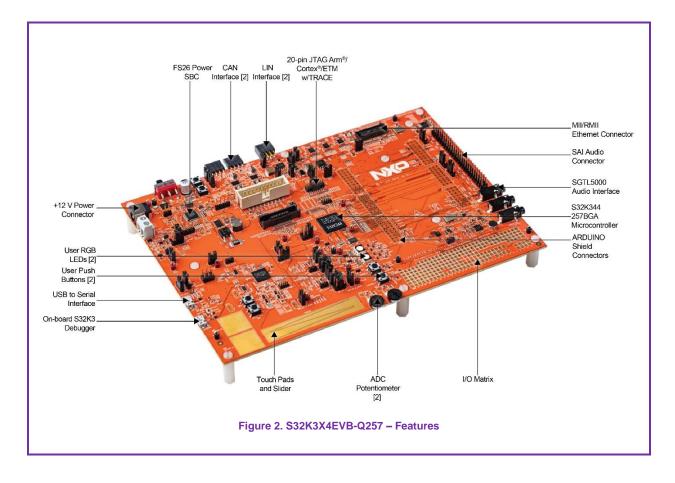
Customer Evaluation Board for S32K3x4 MCUs Hardware User Manual

1 Table of contents


1	Table of contents	
2	Definitions, Acronyms, and Abbreviations	3
3	Block Diagram	4
4	Features	4
5	Default Configuration	
6	S32K3X4EVB-Q257 and S32K3X4EVBQ257ND - Startup	7
7	Power supply	
7.1	S32K3X4EVB-Q257 - Main Power Supply	9
7.2	S32K3X4EVB-Q257 – FS26/Modes Operation	10
7.3	S32K3X4EVB-Q257 – +5.0 Volts Power Supply	11
7.4	S32K3X4EVB-Q257 – +3.3 Volts Power Supply	12
7.5	S32K3X4EVB-Q257 – VDD_HV_A	12
8	Programming and Debug Interface	17
8.1	RESET Switch and LED indicator	
8.2	On-board S32K3 Debugger	17
9	USB to Serial Interface	19
10	LIN Interface	21
11	CAN Interface	23
12	Ethernet Interface	25
13	Ethernet MII/RMII Connector – Pinout	-
14	QSPI-A Configuration	28
15	User Peripherals	29
15.1	1 GPIO Matrix	29
15.2		
15.3		
15.4		
16	Default Jumpers	
17	Revision history	35
18	Legal Information	
18.1	1 Definitions	36
18.2		
18.3	3 Trademarks	36

2 Definitions, Acronyms, and Abbreviations


The following list defines the abbreviations used in this document.


CD CMOS CPLD CPU CSI CSPI DDR DIP EEPROM GPIO GPO I2C ICE I/O JTAG LAN LCD LED MB MCU MMC MCD MMC MMC MMC MMC MMC MMC MMC MMC	Compact Disk Complementary Metal Oxide Semiconductor Custom Programmed Logic Devices Central Processing Unit Camera Sensor Imaging Serial Peripheral Interface Double Data Rate Dual In-line Package Electrically Erasable Programmable Read Only Memory Erasable Programmable Read Only Memory General Purpose Input/output General Purpose Input/output Inter-Integrated Circuit In-Circuit Emulator Input/output Joint Test Access Group Local Area Network Liquid Crystal Display Light Emitting Diode Megabyte Microcontroller Unit Multi-Media Card Multi-chip product Memory Stick Non-volatile Random-Access Memory Personal Computer Printed Circuit Board Physical interface Power on Reset Pseudo Random Access Memory Power Pulse Width Modulation Graphics Adapter Random Access Memory Synchronous Dynamic Random-Access Memory Synchronous Dynamic Random-Access Memory System International (international system of units and measures) Single In-Line Memory Module Single Pole Single Throw Thin Film Transistor Universal Asynchronous Receiver/Transmitter Universal Asynchronous Receiver/Transmitter Universal Asynchronous Receiver/Transmitter Universal Asynchronous Receiver/Transmitter Universal Serial Bus. Hardware.
USB HW POP	Universal Serial Bus. Hardware. Populate – Component placed
DNP	Do not populate – Component removed

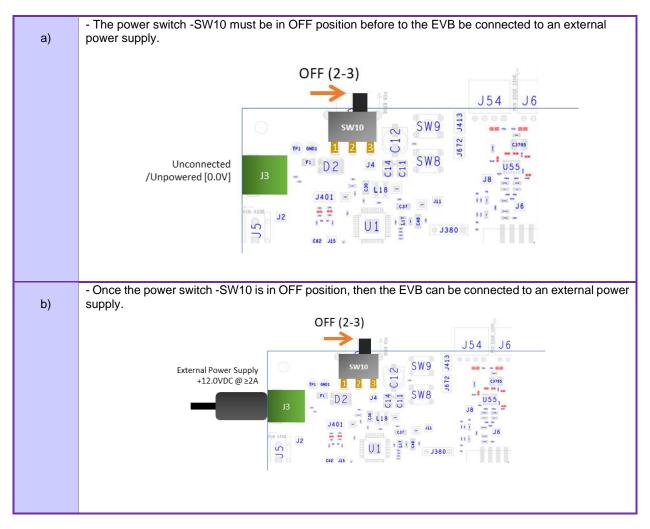
3 Block Diagram

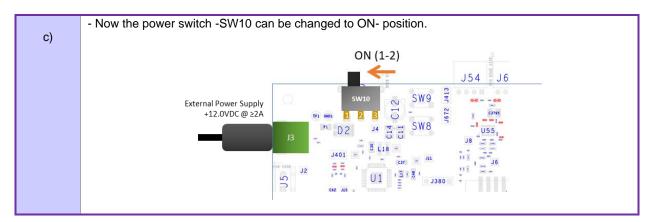
4 Features

5 Default Configuration

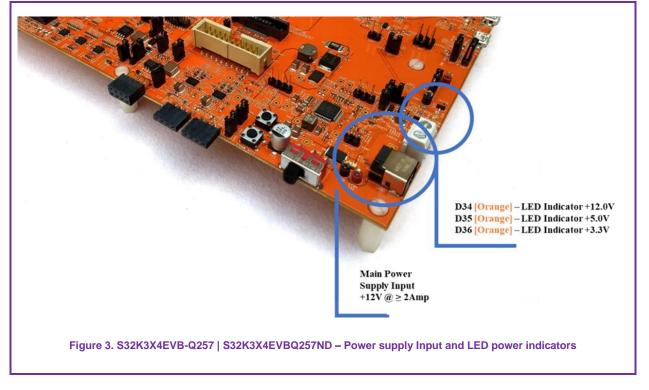
Table 1. S32K3X4EVB-Q257 - Default Configuration

Interface	S32K3X4 EVB- Q257	S32K3X4 EVBQ257 ND	Reference / Signal	Configuration	Description/Comment
MCU Power Supply	•	•	VDD_HV_A_MCU	+5.0V	The VDDA_HV_A domain is connected to +5.0V– Switching Power Supply
Зарріу	•	•	VDD_HV_B_MCU	+3.3V	The VDDA_HV_B domain is connected to +3.3V– Switching Power Supply
	•	•	VDD_REFH_MCU	[VDD_HV_A]	The VDD_REFH domain is connected to VDD_HV_A_MCU
	•	•	V15_MCU	External NPN Transistor	The V15_MCU domain is routed to the external NPN Ballast Transistor
Ethernet	•	•	J63	MII/RMII Enabled	Ethernet MII signals are routed to ENET SABRE connector.


S32K3X4EVB-Q257 HWUM


Interface	S32K3X4 EVB- Q257	S32K3X4 EVBQ257 ND	Reference / Signal	Configuration	Description/Comment
QSPI-A Memory	•	•		Enabled	The MCU signals to the QSPI-A Memory Interface are enabled
Open SDA	•			PTA15	PTA15/LPUART6_RX is routed to OpenSDA for serial interface
				PTA16	PTA16/LPUART6_TX is routed to OpenSDA for serial interface
USB to Serial Interface	•	•		PTC26	PTC26/LPUART3_RX is routed to the USB2UART Interface
				PTC27	PTC27/LPUART3_TX is routed to the USB2UART Interface
CAN	TJA1153	TJA1043	/CAN0	PTA6	CAN0_RX is routed to CAN Phy0
Interface				PTA7	CAN0_TX is routed to CAN Phy0
				PTC23	CAN0_ERRN is routed to PTC23 for CAN Phy0
				PTC21	CAN0_EN is routed to PTC21 for CAN Phy0
				PTC20	CAN0_STB is routed to PTC20 for CAN Phy0
			/CAN1	PTE14	CAN4_RX is routed to PTE14 to CAN Phy1
				PTE3	CAN4_TX is routed to PTE3 to CAN Phy1
				PTE8	CAN1_ERRN is routed to PTE8 for CAN Phy1
				PTD15	CAN1_EN is routed to PTD15 for CAN Phy1
				PTD13	CAN1_STB is routed to PTD13 for CAN Phy1
LIN	•	•	LIN1	PTB9	LPUART9_RX is routed to LIN Phy0
Interface	•	•		PTB10	LPUART9_TX is routed to LIN Phy0
			LIN2	PTB28	LPUART5_RX is routed to LIN Phy1
				PTB27	LPUART5_TX is routed to LIN Phy1
User Push Buttons	•	●	SW4	PTB26	Active Low, before PTA0
	•	•	SW5	PTB19	Active Low, before PTA1
User LEDs	•	•	D32	PTA29	Red
	-	-		PTA30	Green
				PTA31	Blue
	•	•	D33	PTB18	Red
	-			PTB25	Green
				PTE12	Blue
ADC Potentio-	•	●	R672	PTA11	ADCPOT0 [R672] is routed to PTA11 - ADC1_S10
meters	•	•	R679	PTA17	ADCPOT1 [R679] is routed to PTA17 - ADC2_S19

6 S32K3X4EVB-Q257 and S32K3X4EVBQ257ND -Startup


Follow these steps to connect and power on the board

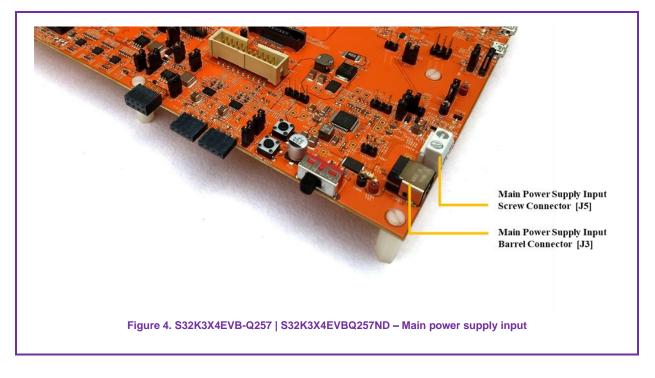
- 1. Carefully unpack the S32K3X4EVB-Q257 and observe ESD preventive measures while handling the K3 development board.
- 2. Connect necessary cables between host PC and EVB board prior to applying power to the EVB.
- 3. The power-ON sequence for the EVB must be as follows:

- 4. When power is applied to the EVB, three orange LED's adjacent to the voltage regulators show the presence of the supply voltages as follows:
 - LED D34
- Indicates that the 12.0V is connected to the EVB correctly.
- LED D35 Indicates that the 5.0V linear regulator is enabled and working correctly.
- LED D36 Indicates that the +3.3Vlinear regulator is enabled and working correctly.

If no LED's are illuminated when power is applied to the EVB and the regulators are correctly enabled using the appropriate jumpers, it is possible that either power supply is not connected properly, or the voltage level is lower that the specified [+12.0V to ≥2Amps].

Note that the fuse will not protect against one of the EVB regulators being shorted. If this happens, damage is likely to occur to the EVB and / or components.

5. The board is ready to use now.


57 HWUM	All Information	provided in this	document is sub	ject to legal disclaimers

S32K3X4EVB-Q25

7 Power supply

The EVB requires an external power supply voltage of between to +12V/≥2A. This allows the EVB to be easily used in a vehicle if required. The 12v input is on the EVB is used to supply a FS26/SBC – U1, the power management IC controller provides +5.0V, +3.3V and +1.5V, for the different power configurations of VDD_HV_A, VDD_HV_B, V15 and other interfaces.

7.1 S32K3X4EVB-Q257 - Main Power Supply

Table 2. Main power supply connectors

Connector	Description
Ground V+ (+12Volts).	2.1mm Barrel Connector – J3 This connector should be used to connect the supplied wall-plug mains adapter. Note – if a replacement or alternative adapter is used, care must be taken to ensure the 2.1mm plug uses the correct polarization as shown
Ground V+ (12Volts).	2-Way Screw Type Connector – J5 This can be used to connect a bare wire lead to the EVB, typically from a laboratory power supply. The polarization of the connectors is clearly marked on the EVB. Care must be taken to ensure correct connection.

S32K3X4EVB-Q257 HWUM

7.2 S32K3X4EVB-Q257 – FS26/Modes Operation

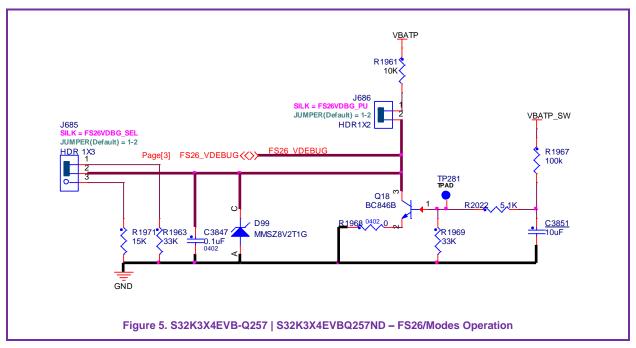
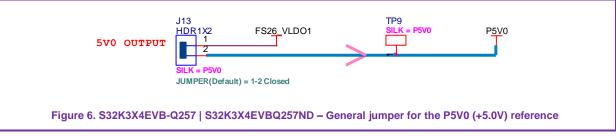



Table 3. S32K3X4EVB-Q257 – FS26/Modes Operation

Reference	Jı	umper Posi	tion	Description	Comments
Flash Mode [Default configuration]	J686	1-2	1	The R1961 resistor to VBATP (VBAT protected +12.0V) is routed as pull-up to the VDEBUG Pin. This is a common pull-up resistor for the 2 voltage divider configurations, with R1971 or R1963.	
	J685	1-2	1 2 3	The R1963 is selected for the divider voltage, +8.0V is applied on VDEBUG pin to set the FS26-SBC on MCU Flash Mode. In this mode device power up sequence starts with debug mode enabled and can be used during customer production process to flash MCU without need of WD refresh. After ~80ms once the SW10 is in ONposition the VDEBUG pin will be switching to a low voltage (GND) due to the RC delay circuitry and Q18	
Debug Mode	J686	1-2	1	The R1961 resistor to VBATP (VBAT protected +12.0V) is routed as pull-up to the VDEBUG Pin. This is a common pull-up resistor for the 2 voltage divider configurations, with R1971 or R1963.	
	J685	2-3	1 2 3 1	The R1963 is selected for the divider voltage, +5.0V is applied on VDEBUG pin to set the FS26-SBC on Debug Mode, voltage must be removed from debug pin in order to start power up sequence. In this mode Watchdog refresh is not needed. After	

Reference	J	umper Posi	tion	Description	Comments
				~80ms once the SW10 is in ONposition the VDEBUG pin will be switching to a low voltage (GND) due to the RC delay circuitry and Q18.	
Normal Mode	J686	OPEN	1	In this mode the FS26 can enter Normal mode by configuring the init fs window and sending properly serviced watchdog refresh by SPI. Please review the FS26 documentation.	
	J685	OPEN	1 2 3		
ŀ	All change of	f jumpers mu	ust be done or	nce the EVB is unpowered from J3 and J5 as MA	NDATORY

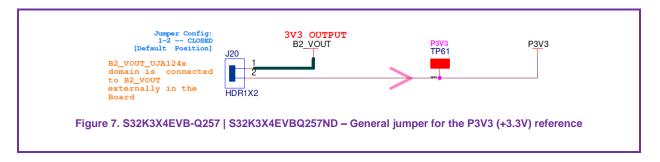

7.3 S32K3X4EVB-Q257 - +5.0 Volts Power Supply

Table 4. S32K3X4EVB-Q257 - +5.0 Volts Power Supply

Reference	Jump	er Position	Description	Comments
J13	1-2	1	The +5.0V output of the FS26x SBC [FS26_VLDO1] is routed to the main P5V0 domain (+5.0V for all board).	Default closed
	OPEN	1 2	P5V0 domain (+5.0V for all board) is isolated/disconnected from the FS26x	

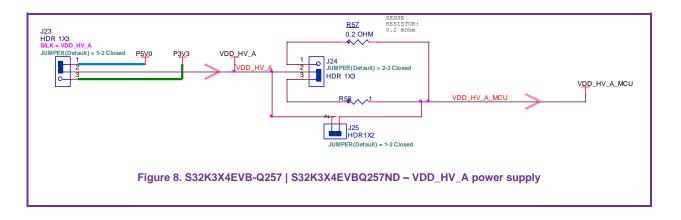

7.4 S32K3X4EVB-Q257 - +3.3 Volts Power Supply

Table 5. S32K3X4EVB-Q257 – +.3.3 Volts Power Supply

Reference	Jumper Position		Description	Comments
J20	1	1-2	The +3.3V Switching power supply is routed to the main P3V3 domain (+3.3V for all board).	Default closed
	1	OPEN	The +3.3V output of the FS26x SBC is isolated to the main P3V3 domain (+3.3V for all board).	

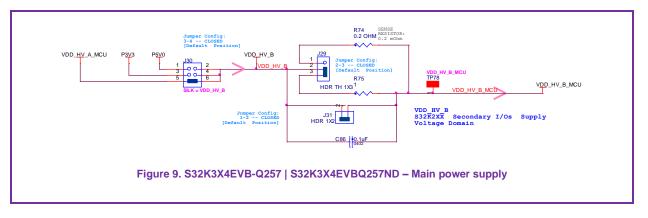
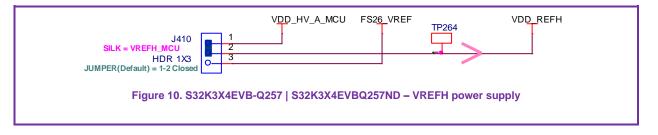

7.5 S32K3X4EVB-Q257 – VDD_HV_A

Table 6. S32K3X4EVB-Q257 – VDD_HV_A

Reference	Jumper P	osition	Description	Comments
J23	1 2 3 1	1-2	P5V0 (+5.0V Switching Power Supply) is selected for the VDD_HV_A_MCU reference	Default closed
	1 2 3 1	2-3	P3V3_DC_SW (+3.3V Switching Power Supply) is selected for the VDD_HV_A_MCU reference	
	1 2 3	OPEN	VDD_HV_A domain is isolated and unpowered	
J24	1 2 3	1-2	The shunt resistor R57 [0.2 Ohms] is selected for current measurement proposals on the VDD_HV_A_MCU reference	
	1 2 3	2-3	The shunt resistor R58 [1 Ohms] is selected for current measurement proposals on the VDD_HV_A_MCU reference	Default closed
	1 2 3 1	OPEN	The shunt resistors R57 and R58 are disabled for current measurement proposals on the VDD_HV_A_MCU reference	
J25	1	1-2	VDD_HV_A is routed to VDD_HV_A_MCU reference. A jumper on this position disables the shunt resistors R57 and R58 are disabled for current measurement proposals.	Default closed
	1	OPEN	This jumper allows a differential measurement to the shunt resistor in series for the VDD_HV_A_MCU domain.	

7.5.1 S32K3X4EVB-Q257 – VDD_HV_B


Table 7. S32K3X4EVB-Q257 – VDD_HV_B

Reference	Jumper Position	Description	Comments
J30	1 2 1-2 3 4 5 6	P5V0 (+5.0V Switching Power Supply) is selected for the VDD_HV_B_MCU reference	
	3-4 1 2 3 4 5 6	P3V3_DC_SW (+3.3V Switching Power Supply) is selected for the VDD_HV_B_MCU reference	
	1 2 3 4 5 6	VDD_HV_A_MCU is routed to VDD_HV_B_MCU reference	Default closed
	1 2 OPEN 3 4 4 5 6	VDD_HV_B domain is isolated and unpowered	
	CAUTION - 2 or n	nore connections/jumpers in this header selector is NOT A	LLOWED
J29	1 1-2 2 3	The shunt resistor R74 [0.2 Ohms] is selected for current measurement proposals on the VDD_HV_B_MCU reference	

S32K3X4EVB-Q257 HWUM

	1 2 3	2-3	The shunt resistor R75 [1 Ohms] is selected for current measurement proposals on the VDD_HV_B_MCU reference	Default closed
	1 2 3	OPEN	The shunt resistors R74 and R75 are disabled for current measurement proposals on the VDD_HV_B_MCU reference	
J31	1	1-2	VDD_HV_B is routed to VDD_HV_B_MCU reference. A jumper on this position disables the shunt resistors R74 and R75 are disabled for current measurement proposals.	Default closed
	1	OPEN	This jumper allows a differential measurement to the shunt resistor in series for the VDD_HV_B_MCU domain.	

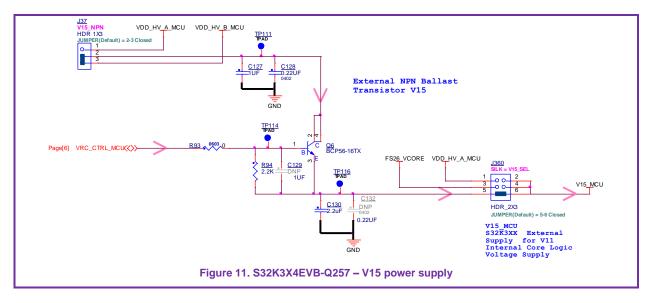
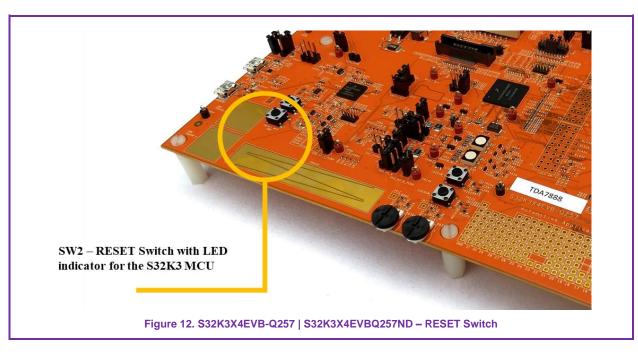

7.5.2 S32K3X4EVB-Q257 – VREFH

Table 8. S32K3X4EVB-Q257 – VREFH

Reference	Jumper Po	sition	Description	Comments
J410	1 1 2 1 3 1	1-2	The VREFH_MCU reference is routed to the VDD_HV_A_MCU domain.	Default closed
	1 2 1 3 1	2-3	The VREFH_MCU reference is routed to the FS26_VREF output domain [+5.0V].	VREH_MCU should not be connected to a higher voltage than VDD_HV_A, therefore J410[1-2] can be placed only when J23[1-2]
	1 2 3 3	OPEN	The VREFH_MCU is floated/unpowered	

7.5.3 S32K3X4EVB-Q257 – V15

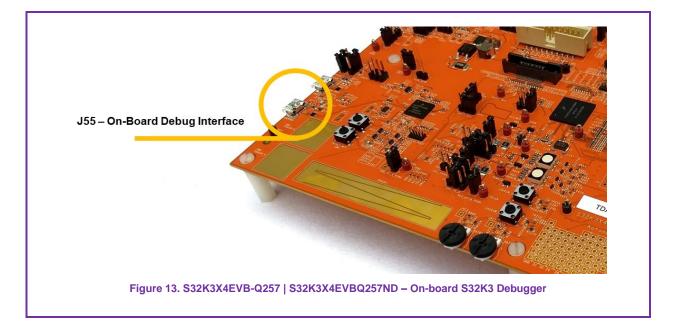
Table 9. S32K3X4EVB-Q257 - V15 Domain


Reference	Jumper P	osition	Description	Comments
J37	1	1-2	The VDD_HV_A domain is routed to the collector terminal in order to supply the NPN external Ballast	
	2		transistor for the V15_MCU domain.	
	3			
	1	2-3	The VDD_HV_B domain is routed to the collector terminal in order to supply the NPN external Ballast	Default closed
	2		transistor for the V15_MCU domain.	
	3			
	1	OPEN	The VDD_HV_A and VDD_HV_B domains are isolated to supply the NPN external Ballast transistor for V15.	
	2			
	3			
J360	1 2	1-2	The VDD_HV_A domain is directly routed the V15_MCU domain.	
	3 4			
	5 6			
	1 2	2-3	The FS26_VCORE domain [+1.5V] is directly routed the V15_MCU domain.	
	3 4			
	5 6			

1 2	5-6	The NPN external Ballast transistor is selected to supply the V15_MCU domain.	Default closed
3 4			
5 6			
1 2	OPEN	The V15_MCU domain is disconnected and isolated from the local external supplies.	
3 4			
5 6			

8 Programming and Debug Interface

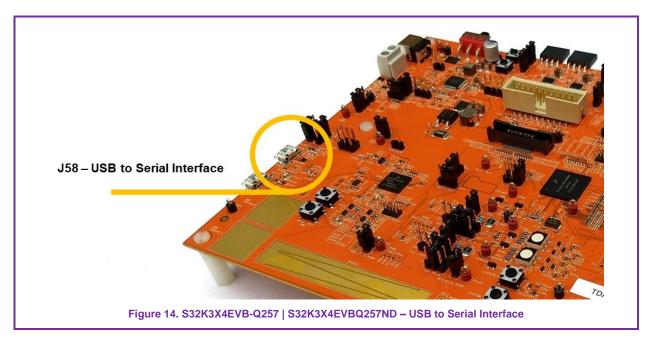
8.1 **RESET Switch and LED indicator**


The RESET switch [SW2] provides for manual application of the RESET input signal. The S32K3 MCU will drive the RESET signal to reset the EVB board peripherals. The RESET LED indicator [D22] will be ON for the duration of the RESET signal. This operation indicates the S32K344 MCU is in the Reset state.

8.2 On-board S32K3 Debugger

The S32K3X4EVB-Q257 [only] incorporates an On-Board Debugger embedded well as JTAG connectors. It bridges serial and debug communications between a USB host and an embedded target processor.

S32K3X4EVB-Q257 HWUM


Table 10. Programming and Debug Connectors

с	onnector	S32K3X4EVB-Q257 S32K3X4EVBQ257ND		Descri	ption
20-Pin Cortex Debug + ETM Connector		J50	SWD, SWV, JTAG Cortex-M3/M4/M7 A 20-pin header (dimensions: 0.50" x 0.188" (12. NOTE - JTAG - TI Due that the MCU shared with other i signals/interfaces connector .	i, and ÉTM device. Samtec FT 70 mm x 4. RACE Sign ports used nterfaces. I for the J	als for the trace signals also are t is important to isolate these I4-Cortex Debug D ETM
			SIGNAL NAME	MCU PORT	COMMENT
			TRACE_CLK	PTB9	
			TRACE_D0	PTB8	
			TRACE_D1	PTE2	
			TRACE_D2	PTA14	
			TRACE_D3	PTA13	
10-Pin Cortex Debug Connector		J52	Wire and JTAG in 10-pin (0.05") conr access to all SWD Cortex-Mx device.	terface mod hector. This , SWV, and Samtec FT	r provides support for Serial des in a very small, low cost new style connector provides JTAG signals available on a SH-105-01) is specified with 8 mm).

38-Pin ARM ETM Mictor Connector	P1	The Mictor (Matched Impedance Connector) has been the standard way to connect a trace probe to an ARM target. It supports up to 32-bit ETM trace and is really intended for use with very high-speed ARM processors such as Cortex-R4 and Cortex-A9. Cortex-M7 supports 16-bit data trace using the Mictor connector. This is only available with DS-5 using a DSTREAM debug and trace unit.
20-Pin ARM Standard JTAG Connector	J365	The ARM standard JTAG connector has been used for many years in systems with ARM processors. It supports the JTAG interface for accessing ARM7 and ARM9 based devices. For Cortex-Mx devices, it supports Serial Wire and JTAG interfaces for accessing all SWD, SWV, and JTAG signals available on a Cortex-Mx device. The header (e.g. a Samtec: TST-110-01-L-D) is a 20-Pin, 0.10" (2.54 mm) pitch connector with these dimensions: 1.3" x 0.365" (33 mm x 9.27mm).

9 USB to Serial Interface

The EVB incorporates an interface providing a serial connectivity via a direct USB connection between the PC and the EVB. The circuit contains an FTDI FT2232D USB to Serial interface which should automatically install the drivers for 2 additional COM ports on your PC. Note that only one of these is used so you will need to try both. For more information on the USB drivers and general fault finding, consult the FTDI website at http://www.ftdichip.com/

The PTC27 MCU port (LPUART13_TX) and PTC26 MCU port (LPUART13_RX) signals are routed to the FTDI transceiver via zero ohms resistors allowing the transceiver to be isolated from the MCU pin if desired. The default configuration is with the zero ohms resistors, routing the TX and RX signals from the MCU to the FTDI transceiver.

S32K3X4EVB-Q257 HWUM

Signal MCU /Module Port Reference		Reference	Description	Comment	
1			R303	LPUART13_RX signal is routed to FTDI interface	Default configuración
	LPUART13_TX	PTC27	R309	LPUART13_TX signal is routed to FTDI interface	Default configuración
2	LPUART6_RX	PTA15	R302	LPUART6_RX signal is routed to FTDI interface	
	LPUART6_TX	PTA16	R308	LPUART6_TX signal is routed to FTDI interface	
 If the user want use or change to LPUART6 RX/TX, then: R303 and R309 must be removed. R302-0603-0ohms and R308-0603-0ohms must be populated If the user wants to use other LPUARTx RX/TX module of the MCU, the user can have access to the USB to serial interface by the J677 header. For this use case R302, R303, R308 and R309 must be removed. For a LPUARTx RX/TX module under the domain voltage VDD_HV_A, the R293 must be populated and R294 must be removed. For a LPUARTx RX/TX module under the domain voltage VDD_HV_B, the R294 must be populated and R293 must be removed. 					

Table 11. USB to serial interface - Control Jumpers

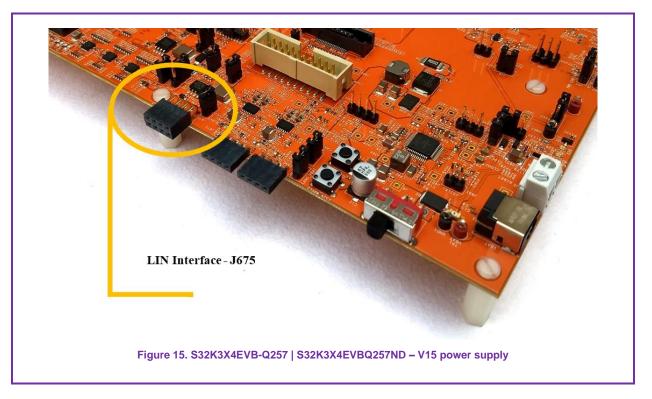
The USB to Serial UART interface in the EVB has two options to configure.

- USB Bus powered configuration.
- USB Self powered Configuration.

USB Bus Powered Configuration (*Default Configuration*).

The USB Bus Powered device gets its power from the USB bus. Basic rules for USB Bus power devices are as follows:

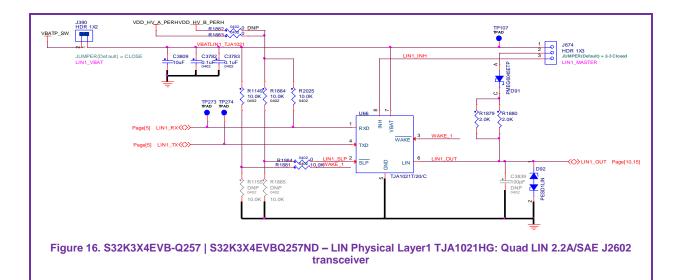
- On plug-in, the device must draw no more than 100mA
- On USB Suspend the device must draw no more than 500µA.
- A High-Power USB Bus Powered Device (one that draws more than 100mA) should use the PWREN# pin to keep the current below 100mA on plug-in and 500µA on USB suspend.
- A device that consumes more than 100mA cannot be plugged into a USB Bus Powered Hub.
- No device can draw more that 500mA from the USB Bus.

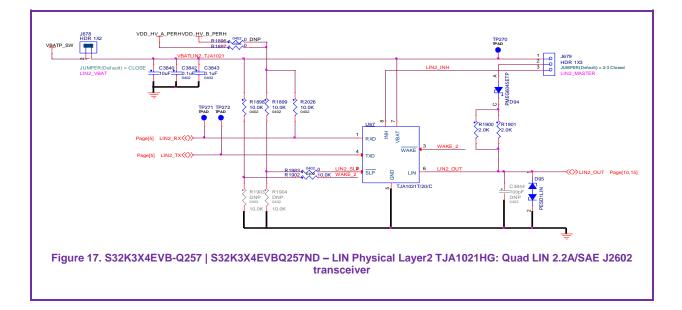

USB Self Powered Configuration.

A USB Self Powered configuration gets its power from its own POWER SUPPLY and does not draw current from the USB bus. The basic rules for USB Self power devices are as follows.

- A Self-Powered device should not force current down the USB bus when the USB Host or Hub Controller is powered down.
- A Self Powered Device can take as much current as it likes during normal operation and USB suspend as it has its own POWER SUPPLY.
- A Self Powered Device can be used with any USB Host and both Bus and Self Powered USB Hubs.

10 LIN Interface


The EVB incorporates two LIN interfaces connected the S32K344 MCU. Using an NXP LIN transceivers the TJA1021T/20/C, supporting both master and slave mode (jumper selectable). The output from the LIN transceivers is connected to J675.



The pinout of these headers is shown below and is also detailed on the PCB silkscreen.

Table 12. LIN Connector

Connector	Reference	Pin Number	Signal/Connection
	J675	1	GND
2		2	GND
No		3	NC
		4	NC
		5	VBAT
3 1		6	VBAT
5		7	LIN2_OUT
		8	LIN1_OUT

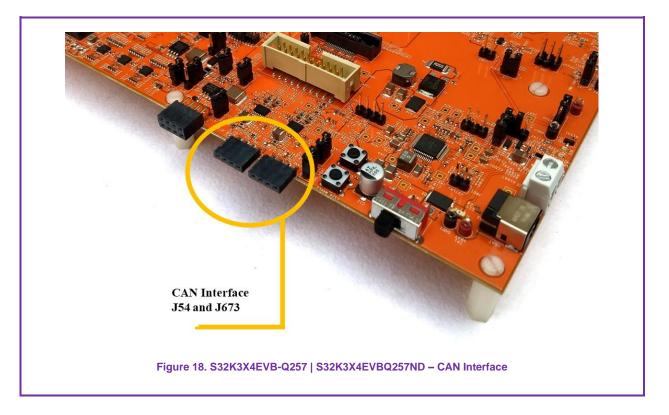
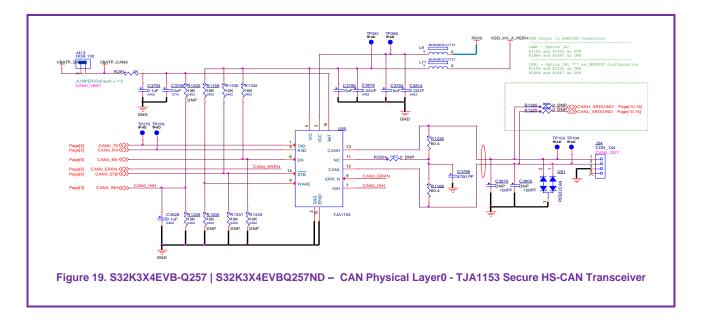


Table 13. LIN Interface – MCU Connections

LIN Interface	Signal Name	MCU Port	Comment/Description
TJA1021	LIN1_RX	PTB9	LPUART9_RX is routed to LIN Phy1
/LIN1	LIN1_TX	PTB10	LPUART9 is routed to LIN Phy1
TJA1021	LIN2_RX	PTB28	LPUART5_RX is routed to PTE14 to LIN Phy2
/LIN2	LIN2_TX	PTB27	LPUART5_TX is routed to PTE3 to LIN Phy2


S32K3X4EVB-Q257 HWUM

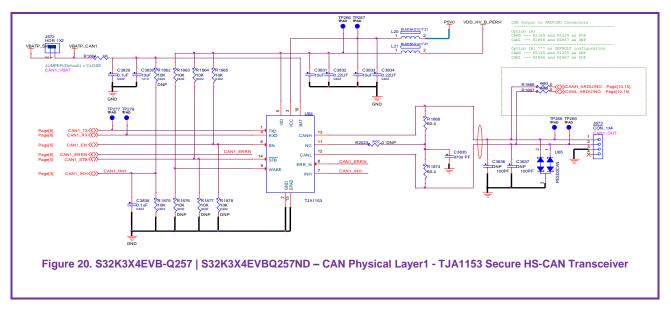

11 CAN Interface

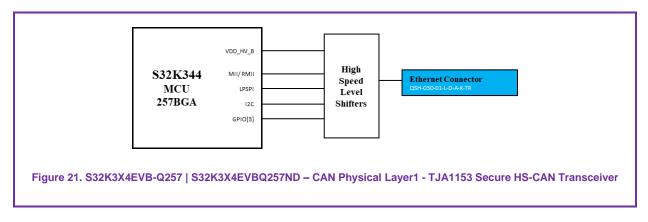
Table 14. CAN Interface - Connectors

Connector	Reference	Circuit/ Interface	Pin Number	Signal/Connection
	J54	CAN0	1	CANH0
			2	CANL0
			3	GND
			4	NC
4	J673	CAN1	1	CANH1
3			2	CANL1
2			3	GND
1			4	NC

Table 15. CAN Interface – MCU Conn

CAN Interface	Signal Name	MCU Port	Comment/Description
TJA1153	CAN0_RX	PTA6	[CAN0_RX Module] is routed to CAN Phy0
/CAN0	CAN0_TX	PTA7	[CAN0_TX Module] is routed to CAN Phy0
	CAN0_ERRN	PTC23	PTC23 is routed to CAN Phy0 as CAN0_ERRN
	CAN0_EN	PTC21	PTC21 is routed to CAN Phy0 as CAN0_EN
	CAN0_STB	PTC20	PTC20 is routed to CAN Phy0 as CAN0_STB
TJA1153	CAN1_RX	PTE14	[CAN4_RX Module] is routed to PTE14 to CAN Phy1
/CAN1	CAN1_TX	PTE3	[CAN4_TX Module] is routed to PTE3 to CAN Phy1
	CAN1_ERRN	PTE8	PTE8 is routed to CAN Phy1 as CAN1_ERRN

S32K3X4EVB-Q257 HWUM


All Information provided in this document is subject to legal disclaimers

© NXP B.V. 2020. All rights reserved

CAN Interface	Signal Name	MCU Port	Comment/Description
	CAN1_EN	PTD15	PTD15 is routed to CAN Phy1 as CAN1_EN
	CAN1_STB	PTD13	PTD13 is routed to CAN Phy1 as CAN1_STB


12 Ethernet Interface

The S32K3 EVB incorporates a complete Ethernet interface providing a MII and/or RMII connectivity and LPSPI, I2Cx, GPIOs [3] as digital signals and +3.3V and +12.0V (+5.0V as optional) to the ethernet connector.

Ethernet Connector - The *EVB* has a High-Speed Connector that is compatible with some external boards:

- ADTJA1101-RMII
- ETHPHY100BASET

S32K3X4EVB-Q257 HWUM

13 Ethernet MII/RMII Connector – Pinout

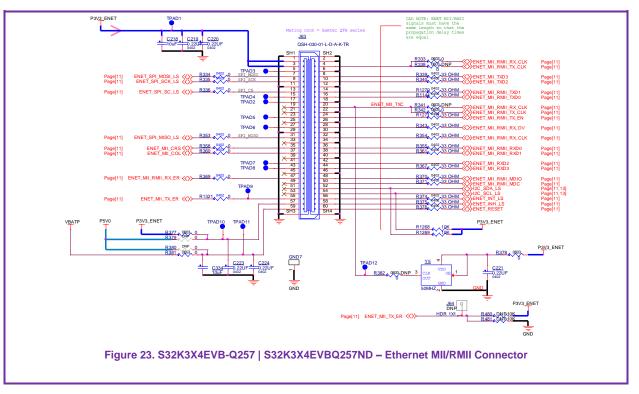


Table 16. Ethernet MII/RMII Configuration

MODULE /FUNCTION	SIGNAL	MCU PORT	DESCRIPTION /COMMENT
MII/RMII	ENET_MII_RMII_RXD0	PTD9	All ports routed to the Ethernet MII/RMII signal
	ENET_MII_RMII_RXD1	PTD8	are not connected to other interface in the EVB
	ENET_MII_RXD2	PTC15	
	ENET_MII_RXD3	PTC14	
	ENET_MII_RMII_RX_CLK	PTC1	
	ENET_MII_RMII_RX_ER	PTC16	
	ENET_MII_RMII_RX_DV	PTC17	
	ENET_MII_RMII_TXD0	PTB5	
	ENET_MII_RMII_TXD1	PTB4	
	ENET_MII_TXD2	PTD6	
	ENET_MII_TXD3	PTD5	
	ENET_MII_RMII_TX_CLK	PTC0	
	ENET_MII_RMII_TX_EN	PTE9	
	ENET_MII_RMII_MDC	PTD17	
	ENET_MII_RMII_MDIO	PTD16	
	ENET_MII_COL	PTB23	
	ENET_MII_CRS	PTB22	

```
S32K3X4EVB-Q257 HWUM
```

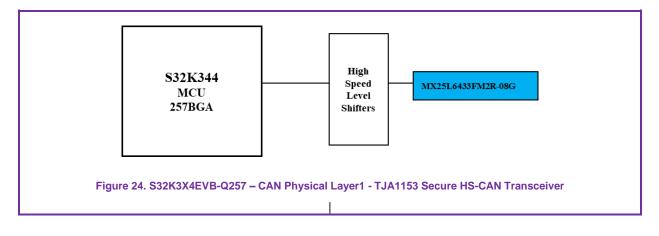
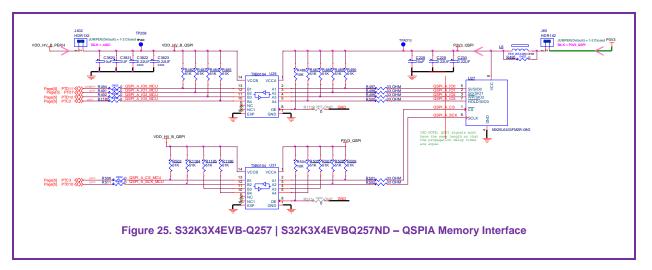

GPIOs	ENET_INH_LS	PTA26	
	ENET_INT_LS	PTA27	
	ENET_RESET	PTE5	As optional GPIO for a RESET on the ethernet connector is the PTE21, for this option, R439/0-Ohms must be placed.
LPSPIx	ENET_SPI_MISO_LS	PTC9	
	ENET_SPI_MOSI_LS	PTB1	
	ENET_SPI_SC_LS	PTC8	
	ENET_SPI_SCK_LS	PTB8	
I2C	I2C_SDA_LS	PTC6	
	I2C_SCL_LS	PTC7	
PWR	VBATP	+12V	P5V0 [+5.0V] can be routed to the Ethernet connector as optional power supply reference instead the VBATP reference. For this option, R380/0-Ohms must be placed and R381 must be removed.
	P3V3_ENET	+3.3V	P5V0 [+5.0V] can be routed to the Ethernet connector as optional power supply reference instead the P3V3_ENET reference. For this option, R380/0-Ohms must be placed and R381 must be removed.
		1	

Table 17. Ethernet Interface - Jumpers

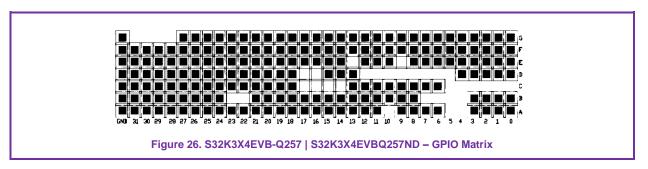
	Reference	Position	Description/Comment
Ethernet	J32	1-2	P3V3 domain is used to supply the Ethernet Interface
Interface		OPEN	The Ethernet Interface is disabled
	J61 1-2 VDD_HV_B_PERH is routed to VDD		VDD_HV_B_PERH is routed to VDD_HV_B_ENET
		OPEN	The level Shifters for the Ethernet Interface are disabled

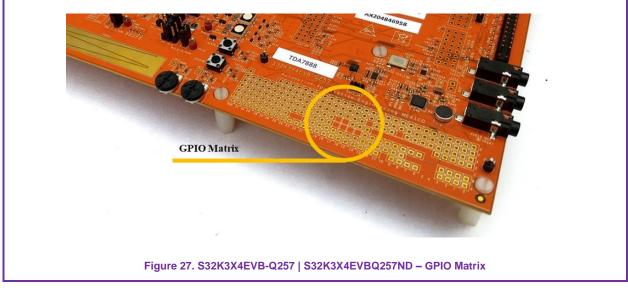

14 QSPI-A Configuration

The S32K3 EVB incorporates a MX25L6433F is 64Mb bits Serial NOR Flash memory, which is connected to the QSPIA Module of the S32K344 MCU.

Table 18. QSPIA Memory Interface - Jumpers

	Reference	Position	Description/Comment
QSPI	J65	1-2	P3V3 domain is used to supply the QSPIA Memory interface
Interface		OPEN	The QSPIA Memory interface is disabled
	J402	1-2	VDD_HV_B_PERH is routed to VDD_HV_B_QSPI
		OPEN	The level Shifters for QSPIA Memory interface are disabled


Module /Function	Signal	MCU PORT	DESCRIPTION /COMMENT
QSPIA	QSPI_A_IO0_MCU	PTD11	All MCU ports routed to the QSPIA Memory Interface are not
	QSPI_A_IO1_MCU	PTD7	connected to other interface in the EVB.
	QSPI_A_IO2_MCU PTD12		
	QSPI_A_IO3_MCU	PTC2	
	QSPI_A_SCK_MCU	PTD10	
	QSPI_A_CS_MCU	PTC3	


The table below details the signals configuration for the QSPI-A.

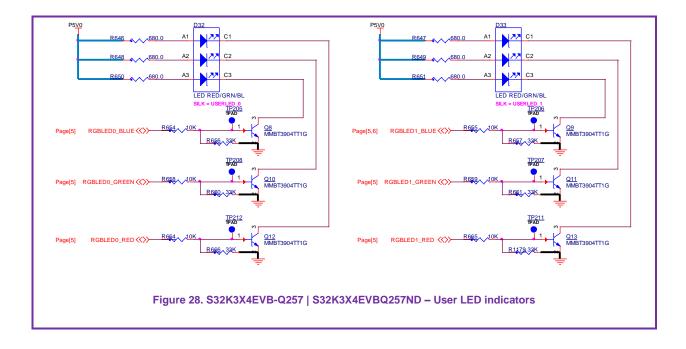
15 User Peripherals

15.1 GPIO Matrix

A subset of available GPIO pins (available pins being those not already routed to the Ethernet connector and the QSPIA-Memory Interface) are available at the GPIO matrix as detailed below. The matrix provides an easy to follow, intuitive, space-saving grid of 0.1" header through-hole pads. Users can solder wires, fit headers, or simply insert a scope probe into the respective pad.

S32K3X4EVB-Q257 HWUM

All Information provided in this document is subject to legal disclaimers

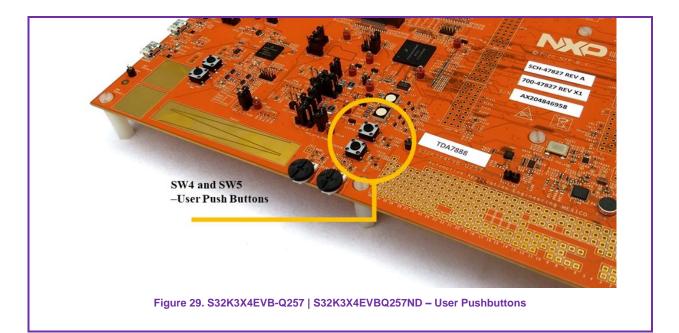

© NXP B.V. 2020. All rights reserved

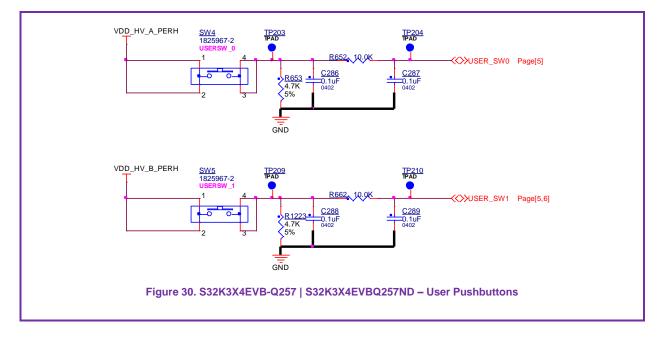
15.2 User LED Indicators

There are 2 active high user RGB LED's are connected by NPN transistors to the MCU ports. The USERLEDs are connected as follows:

Table 19. User LED Indicators

Reference	Signal Name	MCU Port Default	Color	Comment
D32	RGBLED0_RED	PTA29	Red	Active High
	RGBLED0_GREEN	PTA30	Green	Active High
	RGBLED0_BLUE	PTA31	Blue	Active High
D 33	D33 RGBLED1_RED		Red	Active High
	RGBLED1_GREEN	PTB25	Green	Active High
	RGBLED1_BLUE	PTE12	Blue	Active High
		PTB24		Disabled




15.3 User Pushbuttons

There are 2 push-buttons active to high (pulled low, driven to VDD_HV_A and VDD_HV_B), the push button switches (SW4 and SW5) connected to MCU ports. The switches are connected as follows:

S32K3X4EVB-Q257 | S32K3X4EVBQ257ND HWUM

Hardware User Manual

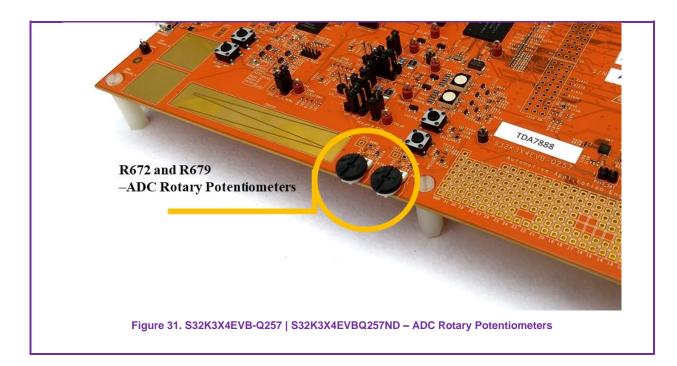
All Information provided in this document is subject to legal disclaimers

© NXP B.V. 2020. All rights reserved

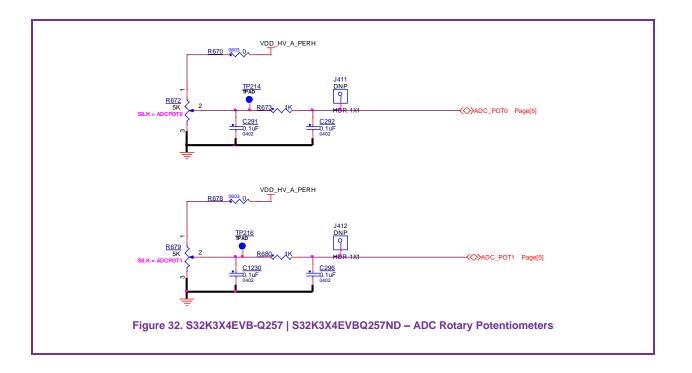
Table 20. User Pushbuttons

Reference	Function	MCU Port	Comments
SW4	USER_SW0	PTB26	Active to HIGH
SW5	USER_SW1	PTB19	Enabled as DEFAULT
		PTF31	Disabled
		PTC18	Disabled

There are zero-ohm resistors on the direct connections between each USER_SWx and the MCU pins. These 1. can be removed if required to isolate or change the User Switch from the default MCU pin.


15.4 ADC Rotary Potentiometers

The EVB incorporates a couple of ADC Rotary Potentiometer [which routes a voltage between 0v to VD_HV_A] directly connected to ADC Precise Input Chanel of the S32K3XX Microcontroller.


Table 21. ADC Potentiometers

Reference	Function	MCU Port	Comments
R672	ADC_POT0	PTA11	Enabled as DEFAULT
		PTA9	Disabled
R679	ADC_POT1	PTA17	Enabled as DEFAULT
NOTE			

There are zero-ohm resistors on the direct connections between each USERSW and the MCU pins. These 1. can be removed if required to isolate or change the User Switch from the default MCU pin.

S32K3X4EVB-Q257 HWUM

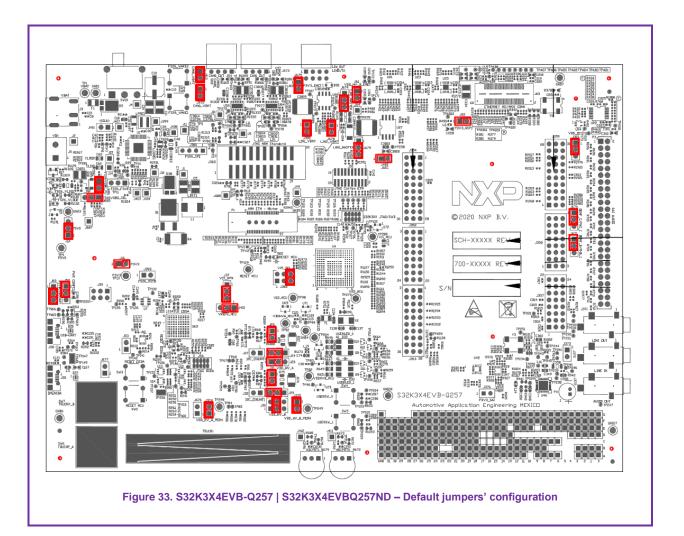

16 Default Jumpers

Table 22. Default Jumper Configuration

Interface	Reference	Position	Description / Comments			
FS26x	J13	1-2	FS26_VLDO1 [+5.0V] is routed to P5V0 domain			
SBC	J16	1-2	FS26_VLDO2 [+3.3V] is routed to P3V3 domain			
Power	J686	1-2	Flash Mode – configuration in the FS26			
Supply	J685	1-2				
USB to UART	J57	1-2	P5V0_USBSER domain is routed to P5V0 for the USB Self Powered Configuration			
Interface	J60	2-3	The Reset# pin is routed to the divider resistor for the USB Self Powered Configuration			
Ethernet	J61	1-2	VDD_HV_B reference is routed for the VDD_HV_B_ENET reference			
Interface	J62	1-2	P3V3 domain is routed to P3V3_ENET			
QSPI	J65	1-2	P3V3 domain is used to supply the QSPIA interface			
Interface	J402	1-2	VDD_HV_B_PERH is routed to VDD_HV_B_QSPI			
S32K3XX	J23	1-2	P5V0 (+5.0V from the FS26) is selected for the VDD_HV_A_MCU reference.			
MCU Power Supply	J24	2-3	The shunt resistor R58 [1 Ohms] is selected for current measurement on the VDD_HV_A_MCU reference.			
	J25	1-2	VDD_HV_A is routed to VDD_HV_A_MCU reference. A jumper on this position disables the shunt resistors R57 and R58 are disabled for current measurement proposals.			
	J30	3-4	P3V3 (+3.3V from the FS26) is selected for the VDD_HV_B_MCU reference.			
	J29	2-3	The shunt resistor R75 [1 Ohms] is selected for current measurement on the VDD_HV_B_MCU reference.			

S32K3X4EVB-Q257 HWUM

	T						
	J31	1-2	VDD_HV_B is routed to VDD_HV_B_MCU reference. A jumper on this position				
			disables the shunt resistors R74 and R75 are disabled for current measurement				
			proposals.				
	J37	2-3	The VDD_HV_B domain is routed to the collector terminal in order to supply the				
			NPN external Ballast transistor for V15_MCU domain				
	J360	5-6	The NPN external Ballast transistor is selected to supply the V15_MCU domain.				
	J375	1-2	VDD_HV_B is routed to VDD_HV_B_PERH				
	J374	1-2	VDD_HV_A is routed to VDD_HV_A_PERH				
	J410	1-2	VDD_HV_A_MCU is routed to VDD_REFH				
User	J670	1-2	PTE0 is routed to the ARDUINO shield connectors				
Peripherals	J671	2-3	PTA9 is routed to the ARDUINO shield connectors				
	J321	1-2	VDD_HV_A_PERH is routed to VDD_IO				
LIN	J390	1-2	LIN1 Physical layer – LIN1 is enabled				
Interface	J674	3-4	INH function is routed to LIN1 pullup circuitry for Master configuration				
	J678	1-2	LIN2 Physical layer – LIN2 is enabled				
	J679	3-4	INH function is routed to LIN2 pullup circuitry for Master configuration				
CAN	J413	1-2	CAN0 Physical Layer is enabled. VBATP_SW is routed/turning-ON the TJA1153				
Interface			-U55				
	J672	1-2	CAN1 Physical Layer is enabled. VBATP_SW is routed/turning-ON the TJA1153				
			-U64				

S32K3X4EVB-Q257 HWUM

All Information provided in this document is subject to legal disclaimers

© NXP B.V. 2020. All rights reserved

17 Revision history

Table 23. Revision history

Document Revision	Date	Board Name	Schemati c/ Board Number	Schematic/ Board Revision	Changes	Author
A	08/2021	S32K3X4EVB-Q257	47827	A	Infernal DRAFT	Jesús Sánchez
В	09/2021	S32K3X4EVB-Q257	47827	A	Release version	
		S32K3X4EVBQ257ND	53189	A		

18 Legal Information

18.1 Definitions

Draft — A draft status on a document indicates that the content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included in a draft version of a document and shall have no liability for the consequences of use of such information.

18.2 Disclaimers

Limited warranty and liability - Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors. In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Applications - Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products NXP Semiconductors products, and using NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products. NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Suitability for use in automotive applications — This NXP Semiconductors product has been qualified for use in automotive applications. Unless otherwise agreed in writing, the product is not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Security — While NXP Semiconductors has implemented advanced security features, all products may be subject to unidentified vulnerabilities. Customers are responsible for the design and operation of their applications and products to reduce the effect of these vulnerabilities on customer's applications and products, and NXP Semiconductors accepts no liability for any vulnerability that is discovered. Customers should implement appropriate design and operating safeguards to minimize the risks associated with their applications and products.

18.3 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

NXP — wordmark and logo are trademarks of NXP B.V.

S32K3X4EVB-Q257 HWUM